

A JUMP INTO THE RIVER

At time t = 0, Davita jumps into a deep pool in the river from the top of a rock that is **36 feet** above the water. Davita's position is given by the function $s(t) = -16t^2 + 36$ where signed distance s(t) is in feet and time t is in seconds.

 What is Davita's velocity at t = 0.5 seconds? (Answer in ft per sec, then in miles per hr.) How high above the water is she at this instant?

- 2. When does Davita hit the water? What is Davita's velocity at the instant of impact with the water? (Answer in feet per second, then in miles per hour.)
- Acceleration is the rate of change in velocity with respect to time, that is (v₂ v₁) / (t₂ t₁). Acceleration is measured in velocity per time unit, e.g.,
 <u>feet per second</u> or
 <u>miles per hour</u> / hour
 .
 What is Davita's acceleration from time t = 1 to the time she hits the water? (Answer in ft/sec per sec.)
- 4. Complete the table.

t	0	0.5	1	1.5	2
s(t)					
s'(t)					
s"(t)					

5. Graph the distance function, the velocity function, and the acceleration function in the graphs below.

